

Microsoft Bot Framework

Microsoft Bot Framework is a wrapper for the Microsoft Bot API by Microsoft. It uses Flask to recieve the post messages from microsoft and Celery to complete Async tasks.

The goal was to create a really simple to use library to enable you to interface with the microsoft bot framework.

To run this app using the local simulator

Download and run the simulator from: https://docs.botframework.com/en-us/tools/bot-framework-emulator/

Install the library

pip install microsoftbotframework

Define a task

Create a file in the root directory called tasks.py. In the file define a task as follows.

from microsoftbotframework import Response

def echo_response(message):
 if message["type"] == "message":
 response = Response(message)
 response_info = response.reply_to_activity(message["text"])

Create the main file

from microsoftbotframework import MsBot
from tasks import *

bot = MsBot()
bot.add_process(echo_response)
bot.run()

Run your app

python main.py

Connect to your bot

By default the app runs at http://localhost:5000/api/messages.

Enter this address in the Enter your endpoint URL header of the emulator.

Start chatting! If you followed the above instructions it should repeat back what you type in.

To run this app using the online bot framework

In order to interact with the microsoft bot framework you need to have a internet facing https endpoint with a valid certificate. I personally use heroku to host my bot as it is free and simple to use so I will show how I set it up there but you can host it anywhere as long as you meet the above criteria.

Create a Microsoft Chatbot

Go to https://dev.botframework.com/bots. Register a bot and generate a ‘Microsoft App ID’ and ‘Microsoft App Secret’. Dont worry about the messaging endpoint as we will create that soon. Create a config.yaml file in the root of your project and place the following information.

other:
 app_client_id: <Microsoft App ID>
 app_client_secret: <Microsoft App Secret>

Publish to Heroku

Create a file called “Procfile” and add the following.

web: python main.py

Create a file called requirements.txt and add the following.

microsoftbotframework

Create a file called runtime.txt and add the following.

python-3.6.0

Modify main.py to add set the port argument to the environemnt variable PORT.

from microsoftbotframework import MsBot
from tasks import *
import os

bot = MsBot(port=int(os.environ['PORT']))
bot.add_process(echo_response)
bot.run()

If you havent yet install git

sudo apt-get install git

Signup for a heroku account here: https://www.heroku.com/ and create a new app. Follow the instructions to Deploy using Heroku Git

Go back into the Microsoft MyBots tab and update the Messaging Endpoint to be the Domain found in the Heroku settings tab. Make sure you add “/api/messages” at the of the url.

Congratulations you should not be able to chat to your bot on Skype!

Index

 apt-get install build-essential libssl-dev libffi-dev python-dev

use python3-dev if using python3-dev

pip install cryptography PyJWT

*note remove cryptography and PyJWT from setup.py
*they may want to add verify_jwt_signature=False if they are on their local

Enable Cryptography

This is a optional requriement as it can be hard to install the crpytography library

pip install git+git://github.com/jpadilla/pyjwt@master
pip isntall cryptography

Configure Async Tasks

Note: I have only successfully tested async tasks on Linux.

You will have to setup a celery backend, I personally use redis but rabbitmq should work as well. I good guide to setting up reddis on Ubuntu can be found here https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-redis-on-ubuntu-16-04.

Add the broker-url and result-backend uri to the environment vars. The default values are for a redis backend.

export CELERY_BROKER_URL=redis://localhost:6379
export CELERY_RESULT_BACKEND=redis://localhost:6379

or you can use a config.yaml file with the following information

celery:
 result_backend: redis://localhost:6379
 broker_url: redis://localhost:6379

to start celery run the following command.

celery -A microsoftbotframework.runcelery.celery worker --loglevel=info

Async Definition

This method will be executed asynchronously. Several Celery decorators are available, check the documentation.

@celery.task()
def AsyncTask(message):
 sleep(10)

The Response Object

The response object is created by passing it the message recieved and then calling Response.reply_to_activity(message).

response = Response(message)
response.reply_to_activity('This is my response.')

You don’t have to pass the message to the Response object but you will have to set all of the required vars before you respond to microsoft.

If you haven’t added ‘Microsoft App ID’ and ‘Microsoft App Secret’ to the global vars you will have to pass them to the response as follows.

response = Response(message, microsoft_app_id='Microsoft App ID', microsoft_app_secret='Microsoft App Secret')
response.reply_to_activity('This is my response.')

Configuration

Additional configuration can be passed to celery and redis (flask comming soon) by setting them in the config.yaml as follows.

celery:
 result_backend: redis://localhost:6379
 broker_url: redis://localhost:6379
 broker_pool_limit: None
redis:

Basic usage

Create the MsBot object
bot = MsBot()
Add processes (methods) to be executed when a message is recieved.
bot.add_process(echo_response)
Start the webserver
bot.run()

This will start a server running on localhost, port 5000.

Process Definition

Every time a message is recieved all of the methods passed to the chatbot via the MsBot.add_process() method will be called.

Base Definition

Every function is passed the message from Microsoft when it is called.

def BaseTask(message):
 pass

Example Definition

This will echo back all messages recieved. See details on the Response object below.

def RespondToConversation(message):
 if message["type"]=="message":
 response = Response(message)
 message_response = message["text"]
 response.reply_to_activity(message_response)

 nav.xhtml

 Table of Contents

 		Microsoft Bot Framework

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

